

1

Development Standards & Practices Used

● Agile work methodology
● Standard Software Development Lifecycle
● Code should be fully tested
● Push code to Git repository often
● Utilizing VM testbeds set up for us
● Using meaningful naming conventions.

Summary of Requirements

● Develop machine/deep learning algorithms to apply to power grid data
● Create a frontend dashboard to display the power grid data after having those algorithm(s)

applied to it
● Test and validate the application with power grid simulators like OPAL-RT.
● The project will run on the Google Cloud Platform
● The system will allow for real-time power grid data as input
● The frontend will be implemented as a web application

Applicable Courses from Iowa State University Curriculum
● COM S 228
● COM S 309
● COM S 311
● COM S/S E 319
● DS 201
● DS 202
● MATH 495

New Skills/Knowledge acquired that was not taught in courses
List all new skills/knowledge that your team acquired which was not part of your Iowa State
curriculum in order to complete this project.

2

Table of Contents
1 Introduction 5

Acknowledgement 5

Problem and Project Statement 5

Operational Environment 5

Requirements 6

Intended Users and Uses 6

Assumptions and Limitations 7

Expected End Product and Deliverables 7

Project Plan 8

2.1 Task Decomposition 8

2.2 Risks And Risk Management/Mitigation 10

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 10

2.4 Project Timeline/Schedule 11

2.5 Project Tracking Procedures 11

2.6 Personnel Effort Requirements 12

2.7 Other Resource Requirements 13

2.8 Financial Requirements 14

3 Design 14

3.1 Previous Work And Literature 14

Design Thinking 14

Proposed Design 15

3.4 Technology Considerations 16

3.5 Design Analysis 16

Development Process 16

Design Plan 16

4 Testing 17

Unit Testing 17

3

Interface Testing 18

Acceptance Testing 18

Results 18

5 Implementation 19

6 Closing Material 19

6.1 Conclusion 19

6.2 References 19

6.3 Appendices 19

4

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

Page 9: Project Timeline/Schedule

Page 10: Personnel Effort Requirements

1 Introduction

1.1 ACKNOWLEDGEMENT

Special thanks to Dr. Gelli Ravikumar for providing us with the opportunity to work with him on
this project, providing us with resources and ideas to complete this project, and for always being
available to answer questions when needed.

We would also like to thank the research students for providing us the PowerCyber Testbed so that
we will be able to test our application.

1.2 PROBLEM AND PROJECT STATEMENT

General Problem Statement

Power Grids serve several homes and businesses and are complex in architecture which can
make them vulnerable to instabilities and unusual behavior. Our project aims to use the collected
power grid data to provide analytics and insights into anomalies and provide more meaningful
information about power usage.

General Solution Approach

To resolve the issue, our team will develop a Machine Learning algorithm that can learn to
analyze the power grid data and display these analytics in the form of graphs and plots. The
Machine Learning algorithm will be deployed on the Google Cloud Platform so that it can run
continuously and provide the visuals to the Dashboard that a power grid operator can access. The
goal of our application is to predict anomalies within power grid nodes at different locations to
enable prompt response and to minimize potential outages.

1.3 OPERATIONAL ENVIRONMENT

The client side operation for this project will be run in a docker container so that all of the
libraries and dependencies are included. The machine learning and backend side of the project will
be run on the GCP (Google Cloud Platform) which will handle the processing of power grid data
and servicing the client docker containers. There will be no extreme or hazardous conditions that
will affect this project.

5

1.4 REQUIREMENTS
● User Interface to view analyzed data

○ The UI should be able to parse json data from the backend.
○ UI should be able to display meaningful insights about the power grid data in

forms of graphs and statistical data.
○ UI should be in the form of a web application
○ The UI should show real-time data using a moving window

● The power grid data will be streamed into the backend through json format.
● The backend server will use a trained ML model to detect anomalies in the power grid

data.
● The ML model will be created using tensor flow and trained on the OPAL-RT power grid

simulator.
● The backend server will send information to the frontend about potential anomalies and

metrics through json
● The backend server will maintain a database of previous data in an ORM.
● The backend will be migrated from the cyber-testbed VMs to the Google Cloud Platform

1.5 INTENDED USERS AND USES

The intended audience for this project is power grid managers/operators who will need to
know real time analytics for the power grid. The application will provide them with visualizations
of the power grid nodes and alerts if anomalies are present. Additionally, data analysts will want to
view power grid data over long periods of time to make informed decisions on the power grid.

6

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

● Clean power grid data will be supplied to us.
● Machine/deep learning algorithms will work as expected.
● Frontend will provide a clean interface to display data from the backend.

Limitations:

● Google Cloud Platform only allows us $300 worth of trial credits per account.
● Currently, the team has a very limited knowledge on machine/deep learning algorithms.
● Testing will not be performed with real power grid data, or power grid operators, therefore

the validity of testing is only from the power grid simulators (OPAL-RT).

1.7 EXPECTED END PRODUCT AND DELIVERABLES
● A trained Machine Learning algorithm for analyzing power grid data will be implemented

(Deadline: April 2021)

7

○ The algorithm will be created using Python and Google’s Tensorflow machine
learning libraries. This allows for relatively easy development of ML or DL
algorithms. The algorithm will first be trained using simulated data.

● The application will be connected to a live stream of power grid data (Deadline: February
2021)

○ One of the expected requirements is to provide the user a live stream of analyzed
data. Therefore it is necessary to receive a livestream of power grid data for the ML
algorithm to analyze.

● A web server created with Python to handle HTTP requests (Deadline: March 2021)
○ The backend of this project will be developed using the Flask framework. This

component will handle all communication with the client-side of our application.
It will also be connected to the database through which we can feed the live power
grid data.

● The frontend will be implemented as a web application (Deadline: March 2021)
○ Our team has decided to design the frontend in Javascript using ReactJS libraries.

React is a rich library for creating user interfaces. The application will then be built
into a Docker container that we can deploy to our cloud platform.

● The frontend will provide some type of geographical visualization of the power grid
(Deadline: April 2021)

○ The user will be able to view the various nodes generating power in the grid. Each
node will provide analytics during its operation.

2 Project Plan

2.1 TASK DECOMPOSITION

In order to solve the problem at hand, it helps to decompose it into multiple tasks and subtasks and
to understand interdependence among tasks.

Frontend

● Set up ReactJS template for the Dashboard
● Dockerize ReactJS for PowerCyber testbed
● Migrate from PowerCyber testbed to GCP
● Design the UI for dashboard
● Start building the dashboard modules
● Test communication with backend to display data
● Prototype a working version of the dashboard

Backend

● Web server and Database
○ Deploy web server
○ Setup database config
○ Complete URL mapping to database

● Machine Learning Development
○ Setup Tensorflow
○ Integrate test power grid data

8

○ Configure ML real-time data
○ Rough training of ML model (Narrow algorithms)
○ Finalize ML model (Testing accuracy and functionality)

9

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

● The accuracy of the machine learning algorithm to detect anomalies will only be trained on
OPAL-RT

○ This means that the machine learning model will only have simulated data to
predict anomalies in real-world data

● There is a spending requirement of 300$ for using the Google Cloud Platform for the
backend

○ This means that the migration will occur later into the project timeline so if there
are any problems with the migration there will not be a lot of time to diagnose.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

● The ML algorithm should be able to classify anomalies with 85% accuracy.
● The lag between the real-time data and analysis shown on the frontend should be less than

3 seconds.

10

2.4 PROJECT TIMELINE/SCHEDULE

2.5 PROJECT TRACKING PROCEDURES

● Git
● Discord
● Zoom

11

● Email
● Google Drive
● Jira

Git will be used for version control of our project, allowing team members to develop on the project
at the same time, and to allow for future use of the project.

Discord will be used for all internal communication within the team, voice and text.

Zoom will be used for our weekly meetings with our client, Dr. Ravikumar.

Email will be used to communicate to our professor since he isn’t in our Discord server.

Google Drive will be used to store all group assignments like reports, reflections, lightning talks,
design documents, and presentations made by us and the professor.

Jira will be used to allow us to follow the Scrum/agile methodology, keep track of what we are
working on and who is working on it, what tasks have been completed and by who, and what tasks
still need to be completed in the upcoming sprints.

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Description Person-hours required

React template setup The frontend dashboard uses
ReactJS.

4-5

Deploy web server in Google
Cloud Platform

Primary site for frontend and
backend/ML will be setup via
GCP

6-10

Dockerize ReactJS for
PowerCyber testbed

ReactJS will be dockerized for
use in PowerCyber and later in
GCP server.

2-3

Setup database configuration Setting up tables for storing
input and output data for the
ML algorithm

6-8

Design UI Based on client requirements,
a suitable UI needs to be
designed

10+

Setup Tensorflow as the
primary ML framework

Tensorflow initial setup to
accommodate input/output
data type(JSON) for training
models.

8-12

Connect database repository Sending and retrieving data 3-5

12

to the backend framework from the ML framework will
be done through a backend
software. This software will
communicate with the
database

Building UI modules After initial design of the UI,
the components will be put
into development by the
frontend team

10+

Integrate power grid data Configure Tensorflow to take
JSON data input

3-5

Connect backend with the
frontend

Setting up communication
link(s) between backend and
frontend.

2-3

Training of ML model After initial experimentation
of the framework, training
algorithms will be used on the
provided data to detect
anomaly and other analyses

30+

Configure frontend and
backend for real-time data

The dashboard should show
real-time data analyses for this
project. Configuration of
ML/backend with frontend to
transmit data in real-time

6-8

Testing Dashboard (frontend)
prototype

The prototype version of
Dashboard UI should meet
major client requirements

5

Testing/Finalize ML model Assuming the ML has trained
its model, test the accuracy
and functionality of its
anomaly detection capability

8

2.7 OTHER RESOURCE REQUIREMENTS

Since this project is completely built through software, there are no additional resources required
such as materials or parts. The project will be using Google Cloud Platform for backend and
frontend. Resources will be provided by the client. We will be using open source software including
Tensorflow, Flask, Docker, and MySQL.

13

2.8 FINANCIAL REQUIREMENTS

Our one financial requirement is to ideally stay within $300 worth of Google Cloud Platform
credits. Other than that, we will be utilizing open-source tools, so our team should not incur any
monetary costs.

3 Design

3.1 PREVIOUS WORK AND LITERATURE

Signal Processing ML Power Grids:
https://github.com/rlim1812/Signal_Processing_ML_Power_Grids

This project uses signal processing and machine learning to analyze signal data from power grid
systems to determine whether the signals were “good” or “bad”. Bad signals are classified as signals
that generate partial discharges and cause faults and/or power outages.

Deep Machine Learning:
https://github.com/interpss/DeepMachineLearning

This project applies deep learning to power systems. Like our project, this project used TensorFlow
as its machine learning engine. This project, however, uses InterPSS to simulate a power system
while we will be using OPAL-RT.

GridAPPS-D:
https://github.com/GRIDAPPSD/

Node Distribution visualization with simulation of capacitors and regulators. Produces graphs
based on the power grid distribution system simulation. Users can force anomalies to be visualized
in the graphs panel.

3.2 DESIGN THINKING

Define Problem Ideate Solution

The real time prediction of anomalies. This problem requires a pre-trained ML model
to respond to a constant stream of data.

In order to implement a scalable and generic
solution to power grids, a robust system
agnostic ML model must be developed.

To achieve a scalable and generic solution, the
ML portion of this project will need an
algorithm to predict the expected power
output for a given node and a discriminator
algorithm to determine if the actual power
output constitutes an anomaly.

14

https://github.com/rlim1812/Signal_Processing_ML_Power_Grids
https://github.com/interpss/DeepMachineLearning
https://github.com/GRIDAPPSD/

The defined requirement to have a client that
can access data from any device.

The client will be in a dockerized container to
be accessed from any device.

The client will want to be able to see data over
a larger period of time.

The backend will store all of the power grid
json data in the ORM database. The frontend
will visualize this data using a dynamic react
template.

3.3 PROPOSED DESIGN

As of right now, we are familiarizing ourselves with the basic technologies. We have set up
basic applications for the frontend and backend to test communication. Additionally, we have
created a simple machine learning algorithm, though it is not related to power grid data. Given
that we are developing the project in a modular format as seen in the diagram above, the
design satisfies our client’s need for a scalable application. The core functionalities are
abstracted into the three categories: Database, Backend, and Frontend. The backend is further
divided into the request handling application and the machine learning algorithm. This
modularity also lends itself to the project being maintainable because problems can be easily
repaired within a module without heavily affecting the system. Using Flask to implement the
request handling, allows our team to optimize the performance of the application since Flask is
lightweight.

Design elements progress so far:

1. Setting up Docker with Hello World Image.
2. Tensorflow (and Keras) libraries downloaded.
3. Anaconda (Python) setup for use with Tensorflow.

15

3.4 TECHNOLOGY CONSIDERATIONS

We have decided to use Flask as the framework for our backend as opposed to Django. Django
allows access to a rich library for backend functionality, but it is more strict with structure
requirements. Also, the rich library for Django comes at the expense of efficient performance. Since
GridAI depends on real-time analysis, our team chose Flask for its lightweight implementation and
flexible structure.

When deciding what framework/library to use for the frontend, our team narrowed the options to
AngularJS and ReactJS. While Angular allows for more flexibility when designing, the learning
curve is steeper than React. React offers more benefits to our project. For instance, React only
requires one coding file in JavaScript while Angular requires both a TypeScript and HTML file. Our
team has some prior experience with React as well. Both of these reasons contribute to React being
the better choice for our project.

PyTorch and Tensorflow were our choices for machine learning libraries. Both open-source
libraries are plentiful and well-developed. Some say that PyTorch is more intuitive and easier to
learn, but Tensorflow has a larger community. Thus, many tutorials can be found regarding
implementations of Tensorflow. PyTorch may run into issues when trying to scale a project, and
scalability was a highly desired characteristic from our client. With this information, Tensorflow
seems like the correct choice.

3.5 DESIGN ANALYSIS

The proposed design from section 3.3 has google cloud integration of our backend infrastructure.
Since we currently do not have the google cloud resources available to us right now, we progressed
with constructing a naive “Hello World” project to get started on the backend and frontend
communication.

We are still in the process of learning and experimenting with ML models which is why we have
not integrated the test data into our current design.

 In the next steps on the development sprint, we will work on integrating the test data into our ML
model. As per our ongoing discussions with the project adviser, we will set up different ML models
for specific metrics which will help us to provide different types of insights into the power grid
data.

For the frontend, we plan to progress from the “Hello world” application to a project suited
application having several endpoints to receive data from the backend.

3.6 DEVELOPMENT PROCESS

We plan towards working incrementally on different aspects of the project by distributing
responsibilities in the group. We plan to follow the regular agile development process for the
project i.e. Meet -> plan -> assign tasks -> develop -> test -> evaluate.

3.7 DESIGN PLAN

The project has 3 main modules, the frontend, backend, and database each with their own unique
requirements and dependencies. The diagram in 3.3 proposed design shows the visual
interconnection of the modules. The context for those connections is provided with respect to the
requirements and use cases is as follows.

Frontend:

16

● Requirements
○ The frontend must display the data for the operator and data analyst to clearly

understand the status of the power grid.
○ The frontend must be able to be accessed from a wide variety of devices to

facilitate the operator in all situations. This requires the use of a docker container
for the react application.

● Dependencies
○ The frontend needs to receive the ML processed data from the backend to display.

Backend:

● Requirements
○ The Flask application must be able to detect anomalies with ML so that the

operator can have up to date information.
○ The backend must communicate in real time with both the database and frontend

to facilitate the requirement of real time data.
● Dependencies

○ The backend needs to receive real-time power grid data from the database.

Database:

● Requirements
○ The database needs to be robust enough to access large amounts of data to send to

the frontend so that the data analyst can make fully informed decisions on power
grid maintenance..

● Dependencies
○ The database needs access to the uninterrupted real time stream of power grid

data.

4 Testing

4.1 UNIT TESTING
● Machine/Deep learning algorithms

The machine learning algorithms will need to be tested in isolation to ensure it functions as
intended. We will use dummy data to feed into the algorithm to check that it is processed correctly.
Then we will need to examine different statistics for each model to determine its accuracy. These
metrics can be obtained through Tensorflow.

● Frontend functions

The React application can be easily tested within the demo mode. Changes made in the code can be
compiled instantly to view the dashboard before sending it to production. In addition, our team
can use hard-coded values to verify that data is represented as we expect. By doing this, we can
narrow the source of other potential errors when completing the system integration.

● Endpoint functions

Our team can use an application such as Postman to send REST requests to our backend
application. Then we can see exactly what a response to the specific requests will contain.

17

4.2 INTERFACE TESTING
● SQL queries -> Machine/Deep learning algorithms -> Frontend functions -> Frontend

design

We will first start out by testing our SQL queries to make sure that the correct data is being pulled
in the correct form. We will also be testing our ML/DL algorithms with test data to make sure that
they are working properly and outputting the correct data. We will then be passing the data from
our SQL queries through the ML/DL algorithms.

Then, we will be testing from the frontend that we can make a call to the backend to get the data
that got passed through the ML/DL algorithms correctly. Next, we will test any extra functions that
we have written to further manipulate the data to make sure they are performing as expected.
Finally, we will then be testing the user interface we create and the visualizations we’ve made for
the data are well organized.

4.3 ACCEPTANCE TESTING
We will present our frontend application and verify that our graphs are displaying correct data and
that there are no bugs present and that the interface is acceptable. We will involve our client by
having him take a look at our application and our backend functionality and have him look over
both things to make sure they are functioning properly. Since we are meeting with our client on a
weekly basis, he is able to see how the application evolves incrementally. This allows

4.4 RESULTS

Through discussions with our client, we have determined that splitting the design into
three separate applications is the best plan of action. These applications would be the user
dashboard, the request handling backend, and the machine learning algorithm. This has allowed
for easy testing of individual components since we can work independently. As we discover more
complexities within our project, further abstraction of the applications may be necessary, such as
running multiple ML algorithms for separate metrics; however, the independent nature of our
modules will accommodate this flexibility.

So far, we have created a simple React application that we can iterate upon to work
towards a fully functional metrics dashboard. We have initialized the connection between the
frontend and backend with simple data retrieval endpoints. Our plan is to gradually increase the
complexity of the data being passed so that we can work towards sending the large power grid
datasets. Our team is still working to build our knowledge base of Tensorflow before attempting to
analyze the test grid data. We have successfully created an algorithm that takes stock price data to
predict future prices. Since stock prices are a time-series dataset similar to the power grid data, the
skills we learn through this experiment will translate to the GridAI project. Attempts to Dockerize
our applications have varied in difficulty. The React and Flask applications are relatively simple to
run in Docker containers, but the machine learning application requires more effort given the
number of dependencies needed to run the application. As the design becomes more complex,
creating Docker containers will prove more difficult. For this reason, configuring the Docker
containers early in our project timeline will eliminate potential problems with integration,
scalability, and maintainability in the future.

18

5 Implementation
Describe any (preliminary) implementation plan for the next semester for your proposed design in
3.3.

6 Closing Material

6.1 CONCLUSION

Summarize the work you have done so far. Briefly reiterate your goals. Then, reiterate the best plan
of action (or solution) to achieving your goals and indicate why this surpasses all other possible
solutions tested.

6.2 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE).

6.3 APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar data that does not directly pertain to the problem
but helps support it, include it here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,
Software bugs etc.

19

