GridAI: Cloud-Based Machine/Deep Learning For Power Grid Data Analytics

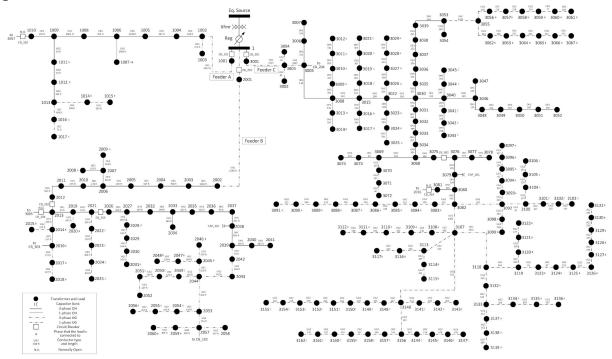
<u>sdmay21-23</u>

Faculty Advisor & Client: Team Members:

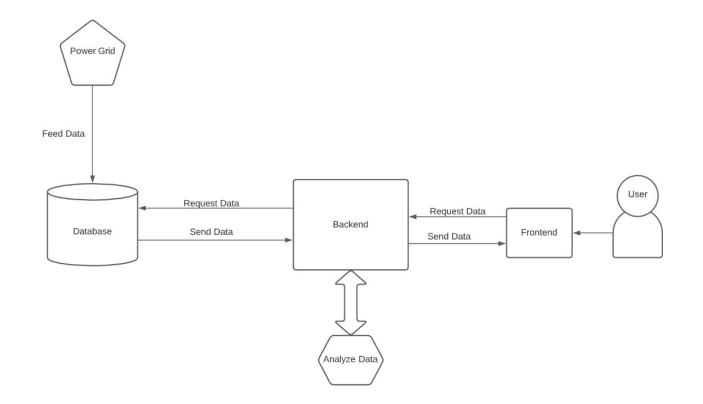
Dr. Gelli Ravikumar

Abir Mojumder

Karthik Prakash


Justin Merkel

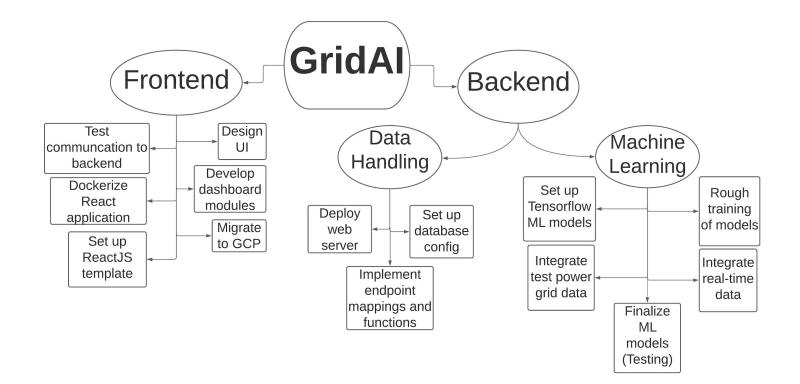
Patrick Wenzel


Abhilash Tripathy

Project Vision

• The Grid AI project seeks to use Deep Machine Learning to develop insights and analytics on a power grid in real time.

Conceptual Design Diagram


Requirements: Functional

- Analyze grid data in real-time
 - Neo4j
 - Flask
- Run on remote system
 - Google Cloud Platform
- Accurately predict and classify anomalies
 - Tensorflow/Keras
- Visualize data and analysis in comprehensible format
 - React (Material UI)

Requirements: Non-Functional

- Scalability
 - Docker
 - Modular Design
- Maintainable
 - Loosely coupled
- Performance
 - Lightweight backend framework

Planned Tasks Overview

Risks and Mitigation

Risks:

Machine Learning:

- Real-world power grids have several variables to consider
 - Size of Power Grid
 - Population of Consumers affecting power draw
 - Demand in different seasons
- The accuracy of the machine learning algorithm to detect anomalies will only be trained on OPAL-RT

Cloud Integration:

- \$300 GCP access to be utilized later.
- Deployment issues on server will be difficult to resolve with time constraint.

Risks and Mitigation

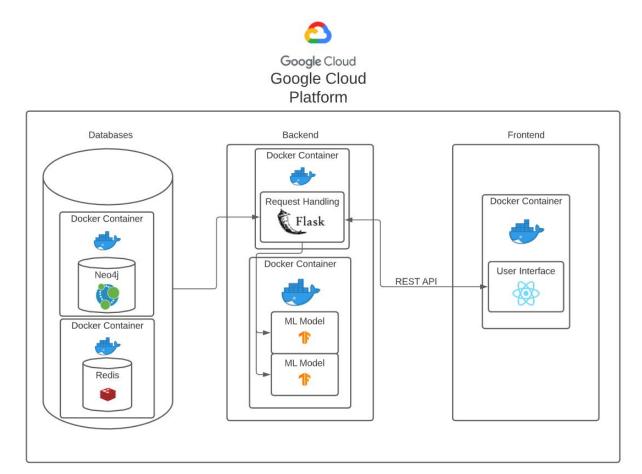
Mitigation:

Machine Learning:

• Larger pool of data; try different ML algorithms to test with the DNN.

GCP setup

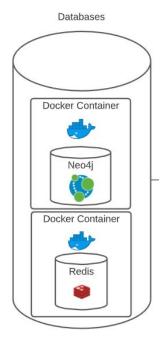
• Use trial benefits to understand the platform and requirements.


Task related issues - Priority Rating

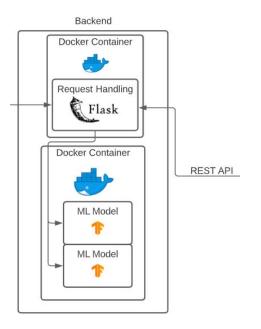
• Resolve higher priority issues first.

Test Components according to IEEE standards:

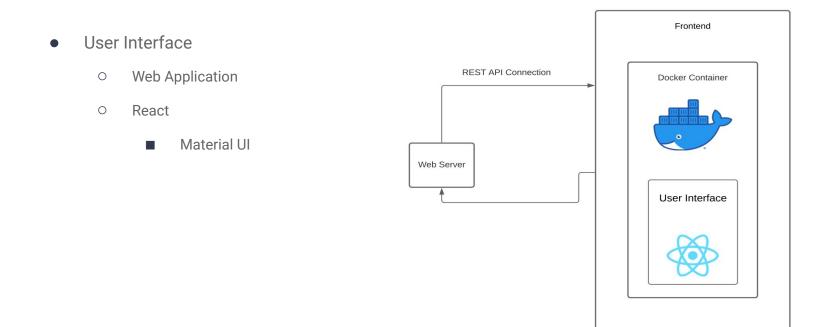
• Evaluate component functionality and reliability with others (check modularity).


System Design: Architecture

System Design: Databases


• Neo4j

- Main Database
- NoSQL node architecture
- Store grid data
- Redis
 - Cache Memory Database
 - NoSQL architecture
 - Potentially store ML analysis for short time



System Design: Backend

- Request Handling
 - Flask
 - Lightweight
 - REST API
 - JSON data structure
- Machine Learning Models
 - Tensorflow & Keras
 - Predictor and Classifier
 - Create more as necessary

System Design: Frontend

System Design: Deployment

• Docker

- Containerize individual components
- Allows for efficient deployment
- Do not have to worry about host system configuration
- ISU PowerCyber Testbed
 - Developmental environment
- Google Cloud Platform
 - Cheap and accessible
 - Reduce resources needed from our end and user end

Frontend Prototype

	GRID AI	Database Spi 49/	ace Usage /50 gB		Number Of Homes	0	Fixed Issues
		A Get more space	🖶 Last 24 Hours			Tracked from Github	
-	Dashboard	_					
	Pages •	Locations Being Monitored	1				
	Components -	Boone County		29			
đ	Forms -	Story County		45			
and and	A day was the	Polk County		56			
⊞	Tables 🗸	Marshall County		23			
•	Maps -	Jasper County		16			
==	Widgets						
~	Charts	40		800	<u>_</u>		
ē	Calendar	30 20	\sim	600 400	\frown		
			F S S	200 🖌 0 12am	n 3pm 6pm 9pm	12pm 3am 6am 9am	
					and an open		
	and the second	Average Power Consumption Trend		Issues Fix			
		↑ 55% increase in power usage.		Trend of tota	I number of issues fixed		
				() Over the per	iod of 24 hours.		


Machine Learning Prototype

• Initial naive implementation for estimating node outputs

• Currently takes static node information and timestamp as input into DNN

• Does not include output from previous nodes in chain

Plot of Prediction vs Actual Value For Feeder A

Project Plan: Milestones

Milestone Duration and Progression Metrics:

- Difficulty of tasks based on team-member experience
- Client evaluation
- Meeting functional and non-functional criterias
- Weightage based on estimated sub tasks

Project Plan: Milestones

GridAl Timeline sdmay21-23									
	Weeks 1-3	Weeks 4-6	Weeks 7-9	Weeks 10-12	Weeks 13-15				
Setup React template									
Deploy web server									
Setup database configuration									
Develop ML algorithm									
Develop UI for dashboard									
Train ML algorithm									
Mapping of URLs									
Integrate real-time data									
Dockerize for PowerCyber testbed									
Test frontend communication									
Test ML Accuracy									
Test system integration									
Lege	nd: Fro	ntend Ba	ackend	Both					

17

Test Plan: ML Models

- 3-stage Process
 - Predicting output using the training data set
 - Predicting output using the OpenDSS simulator on the same parameters as the training set
 - Predicting output of a generic power grid using Opal-RT
- At each stage the expected and actual values will be compared to be acceptable by the client.

Test Plan: Backend Functions

• Utilize Postman

- Test individual endpoints with dummy data
- Test database integration
- Test ML model integration

Test Plan: Frontend Functions & Interfaces

- Manual Testing
 - Making sure data is getting processed in JavaScript functions correctly
 - Validate data showing in graphs
 - Verify components that need perform functions perform them and perform them correctly
- Unit Testing
 - Jest
- Acceptance Testing
 - Verify no components overlap, run off screen, or aren't showing up
 - Have faculty advisor/client also validate our interface design

Conclusion

- Still in the early stages of project implementation
 - Machine Learning Model (Justin Merkel, Karthik Prakash, Abir Mojumder)
 - Docker Container Configured
 - Development in progress
 - Backend (Abir Mojumder, Karthik Prakash, Justin Merkel)
 - Database Setup in progress
 - REST API endpoint mappings in progress
 - Frontend (Patrick Wenzel, Abhilash Tripathy)
 - UI template implemented

Next Semester Plans

Backend

- Set up Google Cloud Platform (GCP) account
- Set up database instances in GCP
- Develop and train machine and deep learning models
- Set up data pipeline

Frontend

- Develop frontend interface
- Connect frontend to GCP database
- Developing ability to set up queries on the frontend to get data from the backend
 - Verify data on the frontend side
 - Visualize the data

Questions?