
GridAI: Cloud-Based
Machine/Deep Learning For
Power Grid Data Analytics

sdmay21-23

Abir Mojumder Karthik Prakash

Justin Merkel Patrick Wenzel

Abhilash Tripathy

Team Members:Faculty Advisor & Client:

Dr. Gelli Ravikumar

Project Vision
● The Grid AI project seeks to use Deep Machine Learning to develop insights and analytics on a

power grid in real time.

2

Conceptual Design Diagram

3

Requirements: Functional

● Analyze grid data in real-time

○ Neo4j

○ Flask

● Run on remote system

○ Google Cloud Platform

● Accurately predict and classify anomalies

○ Tensorflow/Keras

● Visualize data and analysis in comprehensible format

○ React (Material UI)

4

Requirements: Non-Functional

● Scalability

○ Docker

○ Modular Design

● Maintainable

○ Loosely coupled

● Performance

○ Lightweight backend framework

5

Planned Tasks Overview

6

Risks and Mitigation

Risks:

Machine Learning:

● Real-world power grids have several variables to consider
○ Size of Power Grid
○ Population of Consumers affecting power draw
○ Demand in different seasons

● The accuracy of the machine learning algorithm to detect anomalies will only be trained on
OPAL-RT

Cloud Integration:

● $300 GCP access to be utilized later.
● Deployment issues on server will be difficult to resolve with time constraint.

7

Risks and Mitigation

Mitigation:

Machine Learning:

● Larger pool of data; try different ML algorithms to test with the DNN.

GCP setup

● Use trial benefits to understand the platform and requirements.

Task related issues - Priority Rating

● Resolve higher priority issues first.

Test Components according to IEEE standards:

● Evaluate component functionality and reliability with others (check modularity).
8

System Design: Architecture

9

System Design: Databases

● Neo4j

○ Main Database

○ NoSQL node architecture

○ Store grid data

● Redis

○ Cache Memory Database

○ NoSQL architecture

○ Potentially store ML analysis for short time

10

System Design: Backend

● Request Handling

○ Flask

■ Lightweight

○ REST API

○ JSON data structure

● Machine Learning Models

○ Tensorflow & Keras

○ Predictor and Classifier

○ Create more as necessary

11

System Design: Frontend

● User Interface

○ Web Application

○ React

■ Material UI

12

System Design: Deployment

● Docker

○ Containerize individual components

○ Allows for efficient deployment

○ Do not have to worry about host system configuration

● ISU PowerCyber Testbed

○ Developmental environment

● Google Cloud Platform

○ Cheap and accessible

○ Reduce resources needed from our end and user end

13

Frontend Prototype

14

Machine Learning Prototype

● Initial naive implementation for estimating
node outputs

● Currently takes static node information and
timestamp as input into DNN

● Does not include output from previous nodes
in chain

Plot of Prediction vs Actual Value For Feeder A

15

Project Plan: Milestones

Milestone Duration and Progression Metrics:

● Difficulty of tasks based on team-member experience

● Client evaluation

● Meeting functional and non-functional criterias

● Weightage based on estimated sub tasks

16

Project Plan: Milestones

17

Test Plan: ML Models

● 3-stage Process

○ Predicting output using the training data set

○ Predicting output using the OpenDSS simulator on the same parameters as the training set

○ Predicting output of a generic power grid using Opal-RT

● At each stage the expected and actual values will be compared to be acceptable by the client.

18

Test Plan: Backend Functions

● Utilize Postman

○ Test individual endpoints with dummy data

○ Test database integration

○ Test ML model integration

19

Test Plan: Frontend Functions & Interfaces

● Manual Testing

○ Making sure data is getting processed in JavaScript functions correctly

○ Validate data showing in graphs

○ Verify components that need perform functions perform them and perform them correctly

● Unit Testing

○ Jest

● Acceptance Testing

○ Verify no components overlap, run off screen, or aren’t showing up

○ Have faculty advisor/client also validate our interface design

20

Conclusion

● Still in the early stages of project implementation

○ Machine Learning Model (Justin Merkel, Karthik Prakash, Abir Mojumder)

■ Docker Container Configured

■ Development in progress

○ Backend (Abir Mojumder, Karthik Prakash, Justin Merkel)

■ Database Setup in progress

■ REST API endpoint mappings in progress

○ Frontend (Patrick Wenzel, Abhilash Tripathy)

■ UI template implemented

21

Next Semester Plans

 Backend

● Set up Google Cloud Platform (GCP)

account

● Set up database instances in GCP

● Develop and train machine and deep

learning models

● Set up data pipeline

22

 Frontend

● Develop frontend interface

● Connect frontend to GCP database

● Developing ability to set up queries

on the frontend to get data from the

backend

○ Verify data on the frontend side

○ Visualize the data

23

Questions?

